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Summary.  The effect of  sample  size on est imating the 
number  of  genes by the inbred-backcross  and genotype 
assay procedures  was investigated. Modificat ions were 
proposed for each procedure. Ninety-five percent confi- 
dence intervals for es t imated numbers  o f  genes and the 
min imum sample  size required to discr iminate between 
various genetic hypotheses were calculated for both 
procedures.  Sample size had  a greater  impact  on the 
est imation of  gene number  by the genotype assay 
procedure  than by the inbred-backcross  procedure,  
especially for small sample sizes. For  the inbred-back-  
cross procedure,  the opt imal  number  of  backcrosses 
var ied with the number  of  genes. Est imates of  the 
number  of  genes are theoret ical ly less rel iable when 
est imated by the genotype assay procedure  than by the 
inbred-backcross  procedure,  and are sensitive to the 
choice o f  assay generation. General ly,  the inbred-  
backcross procedure  is preferred.  Even with the fulfill- 
ment  of  all genetic assumptions for each method  and 
absence of  error in measur ing  genotypic values, sub- 
stantial upward or downward  biases in the est imates of  
the number  of  genes are expected from both the 
inbred-backcross  and the genotype assay procedures.  
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Introduction 

A number  of  biometr ical  procedures  have been devel- 
oped for est imating the number  o f  genes governing 
quanti ta t ive traits in au togamous  diploids.  

* Part of this study is based on the Ph.D. thesis of the senior 
author 
** Present address: Cereal Improvement Program, Internatio- 
nal Centre for Agricultural Research in the Dry Areas (ICAR- 
DA), P.O. Box 5466, Aleppo, Syria 

The method of moments (Castle 1921; Burton 1951; 
Wright 1968) was among the first procedures for analyzing the 
differences in a quantitative trait between two homozygous 
parents. Subsequent procedures included Mather's K1 
(Mather 1949), the partitioning method (Powers etal. 1950; 
Powers 1963), discriminant analysis (Weber 1959), the inbred- 
backcross procedure (Wehrhahn and Allard 1965), the con- 
volution approach (Tan and Chang 1972), genotype assay 
(Jinks and Towey 1976; Towey and Jinks 1977), and the 
doubled haploid method (Choo and Reinbergs 1982). 
Methods vary in their assumptions, in time and resources 
required, and in precision and reliability of estimates of the 
number of genes. 

The inbred-backcross procedure (Wehrhahn and Allard 
1965) involves the production of inbred lines following several 
backcrosses to the recurrent parent and their subsequent 
classification in replicated field trials as different from or not 
different from the recurrent parent. Unless many genes govern 
the trait, most inbred-backcross lines are expected either to be 
genotypically identical to the recurrent parent or single gene 
deviates. The number of inbred-backcross lines expected to 
deviate from the recurrent parent by a specific gene is mq with 
a 95% confidence interval of approximately mq+2[mq 
( l -q) ]  y2, where m is the number of inbred-backcross lines, 
q=  y2b+ l, and b is the number ofbackcrosses. 

The genotype assay procedure (Jinks and Towey 1976) 
requires an estimate of the proportion (Ph) of randomly 
selected Fn plants, derived from crossing two homozygous 
parents, that are heterozygous for at least one locus. The 
proportion Ph is estimated by testing for unequal means of 
Fn+2 lines derived from two or more randomly selected Fn+l 
progeny of each assay plant. The minimum and maximum 
number of segregatin~ loci is then estimated by equating the 
observed proportion, IJh, to theoretical expectations which are 
a function of the assay generation, number of lines derived 
from each Fn assay plant, number of loci, and two limiting 
genetic models. For their theoretical expectations, Jinks and 
Towey calculated the probability that a sample of Fn+l 
progeny from an Fn plant would not all have the same 
genotypic value. Because there was not a one-to-one cor- 
respondence between genotype and genotypic value, Jinks and 
Towey derived upper and lower limits for the proportion of 
assay plants whose progeny were expected to vary for geno- 
typic values. Assuming unequal gene effects and no domi- 
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nance, each Fn+! genotype would have a unique genotypic 
value, resulting in a maximum proportion (Pmax) of assayed 
plants being classified as heterozygous. With equal effects and 
complete dominance, several different genoytpes may have the 
same genotypic value, resulting in a minimum proportion 
(Pmin) of assay plants being classified as heterozygous. Towey 
and Jinks (1977) also derived expectation for two intermediate 
situations: (i) equal effects and no dominance (Pint.A), and (ii) 
unequal effects and complete dominance (Pint.B)- Jinks and 
Towey (1976) used their Pmax and Pmin curves to give the 
minimum and maximum estimates of the number of genes 
segregating for various quantitative traits of Nicotiana rustica. 

The two methods described above are similar in 
that they both require binary classification. Inbred- 
backcross lines are classified as either parental or non- 
parental; genotype assay plants are classified as either 
heterozygous or homozygous.  Assumptions common to 
both procedures are that there is normal diploid 
meiosis, no linkage, no epistasis, and no selection. The 
purpose of  this study was to consider a basic question 
concerning methodology; that is, does sample size have 
a significant impact on estimation of  the number  of  
genes by the inbred-backcross or genotype assay pro- 
cedures? 

Ninety-five percent confidence intervals for esti- 
mated numbers o f  loci (1~), given k = 2  to 15 loci, were 
calculated for sample sizes of  75, 150 and 300 (Table 1). 
When the sample size was too small for the normal 
approximation to apply (Steel and Torrie 1980, 
Table21.1), confidence limits for d were interpolated 
from the exact binomial distribution (Steel and Torrie 
1980, Table A. 14B). Confidence limits for the esti- 
mated numbers of  loci were rounded off to the nearest 
integer. 

Confidence interval widths increased as k and b 
increased, and generally as sample size decreased 
(Table 1). Interval widths are a function of  the slopes of  
the curves for the theoretical expectations (Fig. 1), 
increasing as the slope decreases. 

Table 1. Ninety-five percent confidence intervals for estimated 
numbers of loci for three sample sizes in the inbred-backcross 
procedure 

Sample Actual no. of loci 
size 

2 4 6 10 15 

Theory and results 

Inbred-backcross procedure 75 
150 

Wehrhahn and Allard (1965) showed that the proba- 300 
bility that an inbred-backcross line would deviate 
from the recurrent parent at any particular locus is 75 
q=Y2 b+l, where b is the number of  backcrosses used 150 
in developing the line. It follows that the proportion of  300 
inbred-backcross lines that deviate from the recurrent 
parent at one or more of  k independent loci is expected 75 

150 
to be 300 

d =  1 - ( l - q )  k (1) 

This proportion of  non-parental  lines increases with the 
number  of  loci by which the donor and recurrent ~1 .0  
parents differ and decreases with the number  of  back- ~7 
crosses (Fig. 1). 

- 0 . 8  In evaluating a set o f  inbred-backcross lines, the < 
number  of  loci carrying genes which govern the differ- ,,, 
ence between parents can be estimated from the ob- ~<0.6 
served proportion (d) o f  non-parental  lines by 7' 

O z 
1~ = l n ( 1 - d ) / l n  ( l -q ) .  (2) , ,0 .4  

123 
With a normal approximation, the 95% confidence z 

interval for d, given d, becomes d •  ~ 0 . 2  ev- 
m] ~. Upon substituting 1 - ( l - q )  k for d, taking natural ~_ 
logarithms, and solving for 1~, the 95% confidence ,-~ 
interval for 1~ becomes o-0.0 

In { 1 - d - l . 9 6 [ d  (1 -d ) /m]  y2}/in(q) < 1~ 
< in { 1-d  + 1.96 [d ( l - d ) / m ]  y2 }/In (q). (3) 

(one backcross) 
1 - 3  3 - 5  4 - 8  8-13 - 
2 - 3  3 - 5  5 - 7  8 -  13 - 
2 - 2  3 - 5  5 - 7  8 -12  12-19 

(two backcrosses) 
1 -3  3 - 6  4 - 8  7 -13  11-20 
1 -3  3 - 5  5 - 7  8 -12  12-18 
1 -3  3 - 5  5 - 7  9 -12  13-17 

(three backcrosses) 
1 - 4  2 - 6  4 - 9  7 -  14 11 -20  
1 -3  2 - 6  4 - 8  8 -13  12-19 
1 -3  3 - 5  5 - 7  8 -12  13-17 
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/ /  ......"" 
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Fig. 1. Theoretical proportions (d) of non-parental inbred- 
backcross lines for one, two and three backcrosses 



D. K. Mulitze and R. J. Baker: Effect of sample size on estimating the number of genes 555 

Sample size is also critical in trying to distinguish 
between various genetic hypotheses. A properly 
planned experiment might require, for example, a 
sample size sufficient to distinguish (with 95% cer- 
tainty) between di- or tri-genic inheritance. With two 
backcrosses, the expected proportions of  non-parental 
lines would be 0.2344 and 0.3301, respectively. Using 
the standard error method of Mather (1951), the 
minimum sample size required would be approxi- 
mately 

m =  { 1.96[(rl (1-rl))Y~+(r2(1-r2))~2]/(rl-r2)} 2, (4) 

where rl and r2 are the expected proportions of  non- 
parental lines. At least 335 inbred-backcross lines 
would be required to distinguish between di- and tri- 
genic inheritance with two backcrosses (Table 2). With 
one backcross, only 190 lines would be required to test 
the same hypothesis at 95% certainty. 

The original proposal of  Wehrhahn and Allard 
(1965) differs somewhat from that outlined above. 
Rather than estimating the number  of  genes from an 
estimate of the total proportion of non-parental lines, 
they recommended evaluation of distinct groups of 
inbred-backcross lines. Inbred-backcross lines will not 
always fall into distinct groups. Even when they do, one 
will have to decide, for example, if  a particular group 
represents lines which deviate from the recurrent 
parent at a single locus or at either of two loci each 
carrying alleles with equal effect. It is important to be 

able to distinguish between such hypotheses if one uses 
the approach described by Wehrhahn and Allard. The 
arguments concerning sample size would be similar to 
those described above. For example, with two back- 
crosses, the proportion of lines that deviate from the 
recurrent parent at a particular locus is expected to be 
0.125 while the proportion that deviate at one or the 
other of two loci having genes with equal effect is 
expected to be 0.219. From equation4, one can esti- 
mate that 242 lines would be required to distinguish 
between the two alternatives. With three backcrosses, 
comparable proportions would be 0.062 and 0.133, and 
263 inbred-backcross lines would be required to dis- 
tinguish between one and two genes for any particular 
group of lines. 

In using the total proportion of non-parental lines 
to estimate numbers of  genes, one avoids the often 
subjective classification of lines into distinct groups 
while sacrificing the opportunity to estimate the effects 
of individual genes if fines do fall into distinct groups 
(Wehrhahn and Allard 1965). However, it seems clear 
that consideration of sample size is going to be similar 
in either approach. Large samples will be required to 
give reasonably precise estimates of numbers of genes 
and to distinguish between moderately simple genetic 
hypotheses concerning all non-parental lines or groups 
of non-parental lines. With few genes, more precise 
estimates may be derived with one backcross. As the 
number of genes increases, it will be necessary to 
increase the number of  backcrosses in order to increase 
the precision of estimates. 

Table 2. Theoretical minimum numbers of inbred-backcross 
lines required to be 95 percent certain of distinguishing be- 
tween various numbers of loci using the inbred-backcross pro- 
cedure 

No.  o f  No.  ofbackcrosses 
loci 

1 2 3 

2 vs. 3 190 335 637 
2 vs. 4 56 100 189 
2 vs. 5 31 51 96 
3 vs. 4 317 508 927 
3 vs. 5 95 147 264 
3 vs. 6 50 74 131 
4 vs. 5 487 704 1,235 
4 vs. 6 144 199 344 
4 vs. 7 75 99 168 
5 vs. 6 713 930 1,563 
5 vs. 7 209 260 430 
5 vs. 8 108 127 208 
5 vs. 10 50 54 86 

10 vs. 12 1,044 714 949 
10 vs. 15 249 143 178 
12 vs. 15 966 481 567 

Genotype assay 

In developing theoretical expectations, Jinks and 
Towey (1976) made the implicit assumption that only 
Fn+ 1 progeny with unequal genotypic values would 
give rise to Fn+2 lines with unequal means. This is 
incorrect, for example, in the case of complete 
dominance where some heterozygotes might give rise to 
grandprogeny lines with unequal means even though 
the Fn+l plants have the same genotypic values. 
Assuming a two-locus model with equal effects and 
complete dominance (Pmin, Jinks and Towey 1976), 
progeny with genotypes AABB, AABb, AaBB, and 
aaBb have the same genotypic value but give rise to 
Fn+ 2 lines with three different means (Table 3). As the 
number of distinct Fn+ 2 grandprogeny means de- 
creases, the probability of sampling two or more lines 
with unequal means, as well as the expected proportion 
of heterozygotes, also decreases. From Table 3, it is 
apparent that a genetic model with equal additive 
effects (Pint.A) actually gives the minimum expected 
proportion. Varying levels of  complete or incomplete 
dominance would increase the number of  different 
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Table 3. Expected F~+2 grandprogeny means for genotype assay under four genetic models 

Genotype of Genetic model 
Fn+ I plant 

Additive Dominant Additive Dominant 
unequal unequal equal equal 
(P max) (P int.B) ( P int.A) (P min) 

AABB 2al + 2a2" 2.0al + 2.0a2 4a 4.0a 
AABb 2al + a2 2.0at + 1.5a2 3a 3.5a 
AAbb 2a, 2.0a, 2a 2.0a 
AaBB a~ + 2a2 1.5a, + 2.0a~ 3a 3.5a 
AaBb a, + a2 1.5aa + 1.5a2 2a 3.0a 
Aabb al 1.5a~ a 1.5a 
aaBB 2a2 2.0a2 2a 2.0a 
aaBb a2 1.5a2 a 1.5a 
aabb 0 0 0 0 
No. of distinct 9 9 5 6 
Fn + 2 genotypic means 

a Allelic substitution effects at locus A-a and B-b designated by al and a2, respectively, and by a 
when effects at both loci are equal 

g randprogeny  means  and the expected propor t ion  
would approach  Pmax- 

To show that Pmin and Pint.B are always in termediate  
between Pmax and Pint.A, it is necessary to revise the 
formulae for Pmin (Jinks and Towey 1976) and Pint.B 
(Towey and Jinks 1977). For  an Fn plant  heterozygous 
at r =  1, 2 . . . .  k independen t  loci, the probabi l i ty  of  
choosing p g randprogeny  lines with equal  means  is 

P* = 2 t -s -2r  (5) 
t=0s=0 s ! ( t - s ) ! ( r - t ) !  

where t is the number  o f  loci in the heterozygous or 
homozygous desirable allelic phases and s is the num- 
ber in the homozygous  desirable phase in the Fn+l  
plant.  The propor t ion  of  detectable F" n heterozygotes 
then becomes 

k 
Pmin -- 2k-kn Z kCr ( 2n- I i)k-~ (1 - P*). (6) 

r=0 

For Pint.B, a FORTRAN program was written to 
calculate the revised expected proportions by comput- 
ing the number and probabilities of all possible grand- 
progeny genotypic means from assay plants hetero- 
zygous at r= I, 2 . . . .  k loci, assuming unequal effects 
and complete dominance. Revised Pint.B proportions 
were equal to, or only slightly less than, Pmax with 
greater divergence as the number of loci and the assay 
generation increased. 

Corrected Pmin theoretical expectations were 
approximately midway between those of Pint.A arid Pmax 
(Fig. 2). As the assay generation was delayed, all 
theoretical expectations decreased and became in- 
creasingly convergent. With assay in Fs or later genera- 
tions, the curves become so convergent as to result in 
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Fig. 2. Oenotype assay probability curves for Pmax, Pmin (cor- 
rected), and Pint.A with p = 2  Fn+l-derived Fn+2 lines per 
assay plant 

essentially point  estimates of  the number  o f  genes 
(Fig. 2). Increasing the number  of  Fn+l  progeny 
sampled would result in detection of  even more hetero- 
zygotes and greater convergence of  the curves. 

Ninety-five percent confidence intervals for the 
est imated number  of  loci were constructed to assess the 
impact  of  sample size on est imation by genotype assay. 
Since, in practice, one cannot be certain of  the true 
genetic model,  confidence limits were constructed from 
both the Pmax and Pint.A probabi l i ty  curves. The lower 
limit was taken as the lower limit for Pmax while the 
upper  limit was taken as the upper  limit for PincA. For  
the lower limit, let q=Pmax = 1-z  k where z = l +  
[(2P+2-4P)/(2n+2P-1)] (Towey and Jinks 1977). The 
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Fig. 3. Ninety-five percent confidence limits for the estimated 
number of loci for samples of 150 Fs or Fs genotype assay 
plants (p = 2) 
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Fig. 4. Ninety-five percent confidence limits for various 
sample sizes of F5 assay plants, assuming ten segregating loci 
and p = 2 or 4 F6-derived F7 lines per assay plant 

expected variance o f  q is q ( 1 - q ) / m  where m is the 
number  o f  Fn assay plants. By assuming a Pmax model, 
using a normal approximation to the binomial distribu- 
tion, and solving for k, the lower 95% confidence limit 
becomes In{ l - q -  1.96 [q (1 -q ) /m]  ~} / In (z). The 
upper limit was calculated using the Pint.A proportions, 
interpolation of  the binomial confidence limit (Steel 
and Torrie 1980, TableA. 14B), and reference back to 
the Pint.A probability graph. 

Confidence interval widths increased as the number  
of  loci increased and as the slope o f  the original Pmax 
and Pint.A curves decreased (Figs. 2 and 3). The upper 
confidence limit showed increasing slope with in- 
creasing numbers of  loci, particularly in early genera- 
tions. Interval widths were smaller in Fs than in F5 
assay generations up to about ten loci (Fig. 3). Interval 
widths decreased with increased sample size, especially 
when sample sizes were increased from 50 assay plants 
(Fig. 4). Doubling the number  of  grandprogeny lines 
per assay plant (p) did not decrease interval widths as 
much as doubling sample size (Fig. 4). Interval widths 
with p = 30 were only slightly smaller than with p =4.  
Interval widths were most notably affected by genera- 
tion of  assay, sample size, and number  ofloci. 

Minimum sample sizes required to discriminate 
between two genotype assay proportions expected for 
different numbers  of  loci also were calculated. Two 
expected Pmax or Pint.A proportions were substituted for 
rl and r2 in equation (4). At least 277 F3-derived 
families (with p - -2 )  would be required to discriminate 
with 95% certainty between di- and tri-genic inheri- 
tance under a Pmax genetic model. For a Pint.A model, 
349 plants would have to be assayed and, in the Fs, 
over 1,000 plants would have to be assayed for either 
model (Table4). Minimum required sample sizes 

Table 4. Theoretical minimum required sample sizes for 95% 
certainty of discriminating between genotype assay proportions 
expected for various numbers ofloci under two genetic models 
in F3 and F5 

No. ofloci F~ Fs 

Pmax Pint.A Pmax Pint.A 

2 vs. 3 277 349 1,008 1,051 
2vs. 4 83 111 302 315 
2 vs. 5 43 61 151 160 
3 vs. 4 426 610 1,493 1,561 
3 vs. 5 124 187 409 439 
3 vs. 6 63 100 202 220 
4 vs. 5 609 963 1,815 2,010 
4 vs. 6 173 292 514 570 
4 vs. 7 86 153 256 284 
5 vs. 6 814 1,461 2,368 2,632 
5 vs. 7 228 433 662 739 
5 vs. 8 114 228 313 358 
5 vs. 10 50 110 128 150 

10 vs. 12 715 2,406 1,347 1,682 
10 vs. 15 149 542 246 324 
12 vs. 15 519 1,974 757 1,042 

under Pint.A exceeded those required under  Pmax and 
were greater in the F5 than in the Fs unless the 
hypotheses involved greater numbers o f  loci (Table 4). 

Discussion 

Sampling variance can cause substantial upward or 
downward biases in the number  o f  genes estimated by 
the inbred-backcross or genotype assay procedures. For 
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the inbred-backcross procedure, increased sample size 
would reduce the confidence interval widths. However, 
the number of backcrosses would also have a signifi- 
cant effect, especially on the minimum sample size 
required to test genetic hypotheses about the number of 
genes. Researchers using the inbred-backcross proce- 
dure commonly make two backcrosses. This may not 
be the optimum strategy if, in fact, relatively few genes 
are involved and if conclusions are based upon the 
estimated proportion of non-parental lines. In this case, 
one backcross may be sufficient and would certainly 
require less time and effort. 

The corrected Pmin results in a smaller interval 
between the minimum and maximum estimate of the 
number of genes using the genotype assay procedure. 
In later generations, this results in essentially a point 
estimate of the number of genes. For example, the 
estimate of 7 to 12 genes controlling flowering time in 
Nicotiana rustica (Towey and Jinks 1976) becomes an 
estimate of 7 with the new formula. However, even 
with this improvement, estimates of gene numbers are 
still quite imprecise when sample size is taken into 
consideration. Because of the large sampling variances 
associated with estimates, there is some question about 
the reliability of estimates given by Jinks and Towey 
(1976) and Towey and Jinks (1977). They assayed from 
18 to 80 plants in the F2 to the F6 generations. 

Selection of an optimal generation for genotype 
assay is difficult because of the significant effects of 
generation and number of loci on expected widths of 
confidence intervals. Different assay generations would 
be recommended if one knew a priori whether few or 
many loci were segregating. With four or fewer loci, 
one might assay the F2 generation. As the actual 
number of loci increases, one would opt for later 
generations but not beyond the F6 or FT. Without a 
priori knowledge, one might best opt for an inter- 
mediate generation such as the F4 as the generation to 
be assayed. 

In comparing procedures, sample size appears to be 
a more critical factor for genotype assay than for the 
inbred-backcross procedure. For an equivalent increase 
in sample size, confidence intervals are shortened more 
for the inbred-backcross procedure than for genotype 
assay. For any given number of loci, the confidence 
interval widths and the minimum required sample sizes 
(Tables 2 and 4) for the inbred-backcross procedure 
with optimal number of backcrosses are less than those 
required for genotype assay with the optimal genera- 
tion of assay. From the standpoint of sampling variance 

alone, one would prefer the inbred-backcross procedure 
over genotype assay. 

This discussion assumes that all genetic assumptions 
pertaining to each method are satisfied. Linkage, epis- 
tasis, and any selection can add to the uncertainty 
associated with sampling variability. Furthermore, con- 
struction of confidence intervals assumed a perfect 
binary classification for each procedure. Either heri- 
tability approaching 100 percent or infallible statistical 
procedures are required if inbred-backcross lines and 
assay plants are to be correctly classified. Failing this, 
confidence intervals will be wider still. In practice, 
therefore, the uncertainty in estimating the number of 
genes by these two procedures probably exceeds the 
already substantial uncertainty due to sampling vari- 
ance alone. 
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